Time Series Anomaly Detection; Detection of anomalous drops with limited features and sparse examples in noisy highly periodic data
نویسندگان
چکیده
—Google uses continuous streams of data from industry partners in order to deliver accurate results to users. Unexpected drops in traffic can be an indication of an underlying issue and may be an early warning that remedial action may be necessary. Detecting such drops is non-trivial because streams are variable and noisy, with roughly regular spikes (in many different shapes) in traffic data. We investigated the question of whether or not we can predict anomalies in these data streams. Our goal is to utilize Machine Learning and statistical approaches to classify anomalous drops in periodic, but noisy, traffic patterns. Since we do not have a large body of labeled examples to directly apply supervised learning for anomaly classification, we approached the problem in two parts. First we used TensorFlow to train our various models including DNNs, RNNs, and LSTMs to perform regression and predict the expected value in the time series. Secondly we created anomaly detection rules that compared the actual values to predicted values. Since the problem requires finding sustained anomalies, rather than just short delays or momentary inactivity in the data, our two detection methods focused on continuous sections of activity rather than just single points. We tried multiple combinations of our models and rules and found that using the intersection of our two anomaly detection methods proved to be an effective method of detecting anomalies on almost all of our models. In the process we also found that not all data fell within our experimental assumptions, as one data stream had no periodicity, and therefore no time based model could predict it. Keywords—Anomaly; Outlier; Anomaly Detection; Outlier Detection; Deep Neural Networks; Recurrent Neural Networks; Long short-term Memory;
منابع مشابه
Nonparametric Spectral-Spatial Anomaly Detection
Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local st...
متن کامل3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملDamage identification of structures using second-order approximation of Neumann series expansion
In this paper, a novel approach proposed for structural damage detection from limited number of sensors using extreme learning machine (ELM). As the number of sensors used to measure modal data is normally limited and usually are less than the number of DOFs in the finite element model, the model reduction approach should be used to match with incomplete measured mode shapes. The second-order a...
متن کاملSeparation Between Anomalous Targets and Background Based on the Decomposition of Reduced Dimension Hyperspectral Image
The application of anomaly detection has been given a special place among the different processings of hyperspectral images. Nowadays, many of the methods only use background information to detect between anomaly pixels and background. Due to noise and the presence of anomaly pixels in the background, the assumption of the specific statistical distribution of the background, as well as the co...
متن کاملA Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis
Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.03665 شماره
صفحات -
تاریخ انتشار 2017